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THREE-DIMENSIONAL ANALOG OF PRANDTL–MEYER WAVES

UDC 533; 517.958A. P. Chupakhin1 and Zh. A. Shakhmetova2

This paper studies the regular partially invariant solution of the equations of gas dynamics which ex-
tends the Prandtl–Meyer solutions to the three-dimensional case. All singular manifolds of the third-
order dynamic system that defines the solution are found, and its compactification is constructed.
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Group-theoretical methods allow one to find extensive classes of exact solutions of the nonlinear mathematical
models describing the three-dimensional motion of a medium. The obtained submodels are solved invoking methods
of the theory of dynamic systems. The present paper deals with constructing an exact solution of the equations of
gas dynamics that extends the classical Prandtl–Meyer solution to the three-dimensional case. This solution does
not reduce to a simple wave and describes three-dimensional gas motion.

1. Derivation of the Dynamic System. The subalgebra L4.23 of the symmetry algebra of the equations
of gas dynamics (EGD) with the gas equation of state of general form [1]

L4.23 = {∂x, t∂x + ∂u, ∂t, t∂t + x∂x + y∂y + z∂z} (1.1)

generates a nonbarochronic regular partially invariant solution (RPIS) of rank 1 and defect 1 [2]. It is conveniently
written in cylindrical coordinates (x, r, θ), u = (u, V,W ), where r =

√
y2 + z2, θ = arctan z/y, and u, V , and W

are the axial (along the Ox axis), radial, and circumferential velocity components, respectively.
The invariants of algebra (1.1) are the following thermodynamic quantities: the density (ρ), the pressure (p),

the entropy (S), the polar angle (θ), and the velocity components (V and W ). The component u is a superfluous
function. According to the general scheme of constructing RPIS [3], the solution generated by subalgebra (1.1) is
represented as

V = V (θ), W = W (θ), ρ = ρ(θ), p = p(θ), S = S(θ), u = u(t, x, θ, r). (1.2)

Below, for definiteness, we consider the polytropic gas equation of state p = Sργ with the adiabatic exponent γ > 1,
for which the sound velocity c is represented as c2 = γp/ρ. Substitution of representation (1.2) into the system
of EGD yields a factor system for algebra (1.1) which consists of an invariant subsystem and an overdetermined
subsystems. The compatibility conditions for the latter supplement the invariant subsystem. For the RPIS (1.2),
this procedure is described in [2]; therefore, we shall give only the final result.

The velocity component u (superfluous function) has the form

u = hx/r + U(t, r, θ), (1.3)

where h = h(θ) is an auxiliary function which is a peculiar generalized potential of the solution. The function U in
(1.3) is a solution of the equation

Ut + V Ur + (1/r)WUθ + (1/r)hU = 0. (1.4)
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The invariant subsystem has the form

V ′ = W,

W (c2)′ + (γ − 1)c2(W ′ + V + h) = 0,

Wh′ + h2 − hV = 0,

V 2 +W 2 + 2c2/(γ − 1) = 2b0,

(1.5)

where the prime denotes the derivative with respect to the invariant variable θ; b0 > 0 is a constant. In (1.5),
the third equation is the compatibility condition of the overdetermined subsystem. System (1.5) consists of three
differential equations for four unknown functions V , W , c, and h and a finite relation which is an invariant Bernoulli
integral.

We note that by adding the term u2/2 to both sides of the last equation of system (1.5), one obtains a
complete Bernoulli integral. By virtue of the first momentum equation, Du = 0; therefore, on the right side of the
obtained equality, the constant b0 is replaced by a certain Lagrangian function of the coordinate u.

After the resolution of the invariant subsystem (1.5), Eq. (1.4) is integrated in quadratures. In [2], system
(1.5) is reduced to an implicit ordinary differential equation of the third order by straightening the invariant part
of the total derivative using the replacement θ → λ = λ(θ) according to the formula dλ/dθ = 1/W for W �= 0. The
resulting key equation of the third order is written in terms of the function h and its derivatives. In the study of
the RPIS (1.2), the main point is to examine the solution of the dynamic system (1.5) or the equivalent equation
for g(λ) from [2].

The present paper gives the first stage of a qualitative analysis of the solution of system (1.5).
Representation (1.3) for the velocity component u implies that for h �= 0, the gas motion is substantially three-

dimensional. For h = 0, system (1.5) reduces to the well-known system that describes steady-state irrotational plane
gas flows and has solutions in the form of simple Prandtl–Meyer waves [4]. Thus, the presence of the function h �= 0
generates a new solution that generalizes the classical simple waves. For solution (1.2) in cylindrical coordinates,
the vorticity vector ω = (ω1, ω2, ω3) is represented as

ω1 = r−1uθ, ω2 = −r−1ur, ω3 = r−1((rW )r − V0) = 0.

Hence, by virtue of the first equation in (1.5), this is irrotational gas flow in the plane R2(y, z).
The presence of the function h considerably complicates the analysis of the equations and leads to a new

physically meaningful solution.
2. Transformation of System (1.5). The last equation of system (1.5) is a finite integral; therefore, it is

convenient to treat it as a dynamic system on the sphere S2 in the space R3(V,W, c) or on the cylinder R × S2 in
the space R4(h, V,W, c) and to pass to the surface specified by this integral using stereographic projection. First,
the unknown functions are scaled as follows:

V =
√

2b0 v, W =
√

2b0w, c =
√
b0(γ − 1)Q, h =

√
2b0H, Q > 0. (2.1)

In the new variables (v, w, Q, and H) defined by (2.1), system (1.5) becomes

v′ = w,

wQ′ + α2
0Q(w′ + v +H) = 0,

wH ′ − vH +H2 = 0,

v2 + w2 +Q2 = 1, Q > 0,

(2.2)

where α2
0 = (γ − 1)/2.

The stereographic projection maps the point P of the upper hemisphere S2(v, w,Q), Q > 0 to the point P ′

on the plane R2(R,ψ) according to the formulas [5]

v =
2R sinψ
R2 + 1

, w =
2R cosψ
R2 + 1

, Q =
R2 − 1
R2 + 1

. (2.3)

The variables (R,ψ) are polar coordinates on the plane R ≥ 0, ψ ∈ [0, 2π). Because Q > 0 (this is the scaled sound
velocity), it follows that R > 1, and, hence, on the plane R2(R,ψ) we consider only the exterior of the unit circle.
The image of the north pole N of the hemisphere is an infinite point on the plane.
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In the variables (R,ψ,H), system (2.2) is written as

R′ =
H(R2 − 1)(R2 + 1)2 cosψ

2d
,

ψ′ =
2Rd+H(R2 − 1)2(R2 + 1) sinψ

2Rd
,

H ′ =
H(2R sinψ − (R2 + 1))

2R cosψ
,

(2.4)

where d = (R2 − 1)2 − β2
0R

2 cos2 ψ and β0 = 4/α2
0 (R > 1).

After the introduction of modified time and the new variable g = sinψ, system (2.4) reduces to a dynamic
system with polynomial right sides. In the theory of dynamic systems, the independent variable is usually called
time, although in our case, the independent variable is the polar angle θ. Modified time — the new independent
variable τ — is introduced by the rule

2R |d cosψ| d
dθ

=
d

dτ
. (2.5)

The modulus sign in formula (2.5) ensures the monotonicity of the replacement. The zeroes of the expression
d cosψ can specify nonextendability manifolds of the solution because at them there is a change in the direction of
motion on the trajectories of system (2.4) in the phase space (we return to this question in Sec. 6, which studies
the behavior of the system on the boundaries of the domain of existence of the solution).

After these replacements, system (2.4) becomes

R′ = HR(R2 − 1)(R2 + 1)2(1 − g2),

g′ = (1 − g2)(2Rd+H(R2 − 1)2(R2 + 1)g),

H ′ = H(2Rg −H(R2 + 1))d,

(2.6)

where

d = (R2 − 1)2 − β2
0R

2(1 − g2). (2.7)

System (2.6) is defined in the domain

Ω: R > 1, |g| � 1. (2.8)

The boundaries ∂Ω = {∂Ω1 = {R = 1}⋃
∂Ω2 = {|g| = 1}} of the domain Ω are surfaces in the phase space

R3(R, g,H). They are called the physical boundaries of the manifold on which system (2.6) is defined, in contrast
to those components of the manifold boundary which are obtained by compactification at infinity.

3. General Information from the Theory of Dynamic Systems. The study of the qualitative
properties of solutions of multidimensional dynamic systems has features not available in the two-dimensional case.
For completeness of the discussion, we give the basic propositions of the theory [5–7].

We consider the dynamic system
dxi

dt
= fi(x1, . . . , xn), i = 1, . . . , n. (3.1)

In studying this system, the first stage is to find and classify the singular points x0 of system (3.1) that satisfy the
equations

fi(x0) = 0, i = 1, . . . , n. (3.2)

Let J = (∂fi/∂xj) (i, j = 1, . . . , n) be the Jacobi matrix of the vector field of system (3.1), which defines the
linearization of this system. The nonzero eigenvalues of the matrix J correspond to nondegenerate singular points.
The eigenvalues λ1, . . . , λd with negative real parts correspond to the d-dimensional manifold W d

s on which all
trajectories of system (3.1) enter a singular point x0 as t → +∞; for the eigenvalues λ1, . . . , λk with positive real
parts there exists a k-dimensional invariant manifold W k

u on which all trajectories leave this point. Asymptotic
formulas for the trajectories near the nondegenerate singular point are known.

The existence of a manifold Mk of dimension k which is entirely filled by singular points — a singular
manifold — is possible. At the points Mk, system (3.1) necessarily has k zero eigenvalues. The singular manifold
is called nondegenerate if at almost all singular points Mk there are n− k eigenvalues with nonzero real parts.
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TABLE 1

No.
Description

of Manifold
Eigenvalues

Additional

characteristic

1 Straight lines

lε = {R = 1, u = ε, H ∈ R}
λi = 0, i = 1, 2, 3

(degenerate)
—

2 Straight lines

mε = {R > 1, u = ε, H = 0}
λ1 = 0

λ2 = −4εR(R2 − 1)2

λ3 = 2εR(R2 − 1)2

(nondegenerate for R �= 1)

Degeneration at the points

Bε: R = 1

3 Curves

cε = {R > 1, H = 2εR/(R2 + 1), u = ε}
In c1: 0 < H < 1

In c−1: −1 < H < 0

λ1 = 0

λ2 = −8εR(R2 − 1)2

λ3 = −2εR(R2 − 1)2

(nondegenerate for R �= 1)

Degeneration at the points

Aε: R = 1

4 Points

Bε = {R = 1, u = ε, H = 0}
λi = 0, i = 1, 2, 3

(degenerate)
—

5 Points

Aε = {R = 1, H = ε, u = ε}
λi = 0, i = 1, 2, 3

(degenerate)
—

The degenerate singular points (all λi = 0) are resolved using a method for the resolution of singularities
(blowing of the phase space at a singular point) in which a singular point is replaced by an invariant manifold. It
is known that in a finite number of steps, this process leads to a nondegenerate singular point.

After finding all finite singular points and manifolds and resolving those that are, we construct the compact
manifold on which system (3.1) is defined. Some components of the boundary of this manifold are defined by the
physical conditions of the problem:

Γj : Φj = 0, j = 1, . . . , N. (3.3)

In the examined case, conditions (3.3) are specified by the system of inequalities (2.8). In addition, system (3.1) is
supplemented by the boundary at infinity for the variables xi (an analog of the Poincaré sphere for two-dimensional
dynamic systems) by introducing 2n maps U±

i of the projective coordinates

yi
1 =

x1

xi
, . . . , yi

j =
x1

xi
, zi =

1
xi
, . . . , yi

n =
xn

xi
. (3.4)

In the local map U±
i , we have zi = ±1. In coordinates (3.4), the infinite points xi correspond to the points of

the hyperplane L±
i : zi = ±0. As a result of transformation of coordinates of the form (3.4), a boundary — the

(n− 1)-dimensional sphere Sn−1 covered by hyperplanes L±
i — is attached to the phase space in (2.2) in the region

of infinitely large values of the coordinates xi. This system should be studied on the invariant hyperplane Li because
new singular points can appear on it.

After these procedures, we obtain a dynamic system on the compact manifold S with all singular points and
manifolds of the system being resolved, i.e., made nondegenerate.

The behavior of the trajectories of the dynamic system is studied by means of separatrix approximation.
A sequence of separatrices passing from one singular point to another is constructed, and the behavior of the
trajectories of the dynamic system (3.1) that close to these separatrices is examined using the theorem on continuous
dependence of solutions on the initial data.

In the present paper, we find and classify all singular points and manifolds of system (3.1) and construct the
compact manifold S on which this system is defined.

4. Finite Singular Points and Manifolds of System (2.6). The singular points and manifolds and the
linearization eigenvalues of the vector field of system (2.6) at these points are calculated by a standard but rather
tedious procedure. The final result of the classification of the finite singular points and manifolds of system (2.6)
is given in Table 1. The points of intersection of the straight lines mε and curves cε with the plane R = 1 are
degenerate singular points, on which the degree of regularity decreases. Everywhere in Table 1, ε = ±1.
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Figure 1 shows the domain Ω (2.8) in which system (2.6) is defined; the singular manifolds and points
indicated according to Table 1.

5. Singular Points of System (2.6) at Infinity and Its Compactification. To study the singular
points of system (2.6) at infinity for the variables R and H , it is necessary to transform it to projective coordinates
of the form (3.4). To cover the entire manifold, one needs several maps of the form of (3.4): one for R = +∞ and
two for H = +∞ and H = −∞, respectively. We perform the necessary calculations for one of them and then give
the final result.

Let us find the singular points of system (2.6) for R → +∞ (we recall that R > 1). For this, we introduce
new coordinates (R0, H0, and g) of the form (3.4) according to the formulas

R0 =
1
R
, H0 =

H

R
, g. (5.1)

Because R > 1, it follows that R0 < 1. After the monotonic replacement of time R7
0(d/dτ) → (d/dτ), system (2.6)

in the coordinates (5.1) becomes

R′ = H0R0(R2
0 − 1)(R2

0 + 1)2(1 − g2),

g′ = (1 − g2)(2R2
0d0 +H0(1 −R2

0)2(R2
0 + 1)g),

H ′ = H0(2R0g −H0(R2
0 + 1)d0 +H0(R2

0 − 1)(R2
0 + 1)2(1 − g2)),

(5.2)

where d0 = (1 −R2
0)

2 − β2
0R

2
0(1 − g2).

We find the singular points of system (5.2) for R0 = 0 that correspond to R = +∞. On the plane R0 = 0,
system (5.2) reduces to the system

g′ = gH0(1 − g2),

H ′
0 = H2

0 (g2 − 2),
(5.3)

which after the modification of time |H0|−1 d/dτ → d/dτ becomes

g′ = g(1 − g2),

H ′
0 = H0(g2 − 2).

(5.4)
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Fig. 2
TABLE 2

No. Boundary components Flow parameters State of Gas

1 Plane

R = 1

Q = 0 Rarefaction of gas

Vacuum

2 Plane

g = ε (ε = ±1)
v =

2εR

R2 + 1

w = 0

Q =
R2 − 1

R2 + 1

Radial gas motion

(ε = +1 refers

to a source and ε = −1

refers to a sink)

3 R = +∞ v = w = 0

Q = 1

Stop of gas

Rest

4 Plane

H = 0

Solutions of system

for h = 0

Prandtl–Meyer simple wave

System (5.4) has the following singular points: P0 = {u = H0 = 0} and Pε = {u = ε, H0 = 0}. At the point
P0, the linearization eigenvalues of the vector field of system (5.4) are equal to λ1 = 1 and λ2 = −2, so that this
point is a saddle. The points Pε (λ1 = −2 and λ2 = −1) are attracting nodes.

The behavior of system (2.6) forH → ∞ is studied similarly for two different cases: H → +∞ andH → −∞.
For this, we introduce the coordinates R1 = R/H and H1 = 1/H, g, so that H = ±∞ corresponds to H1 = ±0.
The result of the study is as follows. At the points Q±

0 = {R1 = u = 0, H1 = ±0}, we have λ1 = λ2 = 0. The
resolution of these degenerate points shows that they are nodes. At the points Q±

ε = {R1 = 0, u = ε, H1 = ±0},
the eigenvalues are λ1 = 0 and λ2 = ε, so that these points are saddles.

Figure 2 shows the compact manifold S of system (2.6) with the indication of the singular manifolds according
to Table 1 and the singular points at infinity for the variables R and H .

The above classification of the singular points and manifolds of system (2.6) leads to the conclusion that all
of them are on the components of the boundary of the manifold S; therefore, it is necessary to examine whether
they correspond to any physically meaningful solutions.
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6. Behavior of the Solutions of System (2.6) on the Components of the Boundary of the
Compact Manifold S. Table 2 gives a description of the asymptotic modes of gas motion that correspond to
the components of the boundary of S. All components of the boundary are invariant manifolds. The surface d = 0
specified in the phase space by Eq. (2.7) is the nonextendability surface of the solution: according to Eqs. (2.4),
the vector field of the system has opposite directions on two sides of this surface. This surface is the image of the
acoustic characteristic on the solution (1.2) in the phase space.

Indeed, in the physical space, it corresponds to a certain plane θ = θ0 = const, and the velocity component
normal to this is W . In the variables g and R, the equation W 2 = c2 becomes d = 0, as this proves the statement.

The classical Prandtl–Meyer simple wave [4] corresponds to the invariant manifold in the solution of system
(2.6) — the plane H = 0.

This work was supported by the Russian Foundation for Basic Research (Grant No. 02-01-00550) and the
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